Blender 4 Game Development

Philipp Vath

Sommersemester 2008

Softwarepraktikum

Informatik Uni Freiburg

- Motivation
- 3D-Modelle (Vom Aufbau bis zur Darstellung)
- Blender Modeling Workshop
 - Interface
 - Modeling
 - Texturing
- Export nach XNA
 - OBJ-Formate
 - ContentProcessor

Warum 3D-Modelle (in Computerspielen)?

- 1. Kreativer Spaß und Blickfang:
- → Programmiertem Verhalten Darsteller zuweisen
- Das eigene Computerspiel "bevölkern"
 Ideen in 3D-Objekte umsetzen und darstellen
- 2. 3D-Grafik als Feature macht das Spiel im Bereich Look & Feel besser dreambuildplay.com bewertet bspw. eingesendete Computerspiele mit
 - "40% Fun factor (exciting, entertaining action)"
 - "30% Innovation (push creative and technical limits)"
 - "30% Production Quality (as polished as possible so aufgemotzt wie möglich)"
- 3. Wissen über 3D-Grafik für Computerspiele, Simulationen oder andere Echtzeit-Visualisierungen

Spaß und Blickfang

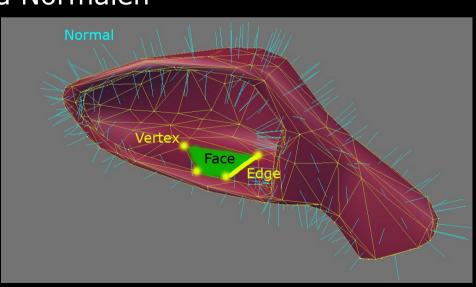
Action: Pyroblazer

Racing: Need for Speed Pro Street

3D-Grafik als Feature

- Entwicklungszyklus eines Games ohne 3D-Grafik
 - Software programmiert durch Programmierer
 - Spieler (Tutoren? ;-) geben Programmierer Feedback
- Entwicklungszyklus eines Games mit 3D-Grafik (Potentiale und Feedback)
 - + Programmierer hat Möglichkeit der Visualisierung
 - + Artist hat Möglichkeit der Interaktivität/Simulation
 - + Artist und Programmierer geben einander Feedback
 - + Spiel wird anschaulicher und besser
 - Was nützt Fahrverhalten ohne Auto und umgekehrt Auto ohne Fahrverhalten im fertigen Produkt ?
- Woher bekomme ich 3D-Modelle ?
 - online
 - Artist (von außen oder innerhalb des Teams (selbst bauen))
 - von mir ;-)

Was ist ein 3D-Modell? Woraus ist es aufgebaut?

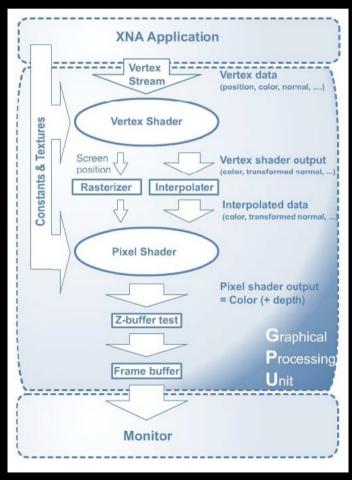

-Die Bausteine in der 3D-Grafik:

• 1 Modell: Meshes

1 Mesh: Faces (Flächen)

• 1 Face: Edges (Kanten) und Normalen

1 Edge: Vertices (Punkte)



Wie kommt mein Modell auf den Bildschirm?

Wie entstehen die 3D-Modelle in meinem Computerspiel?

Idee Design Geometrie Modeling Shading/Texturing

Rendering-Pipeline:

Übersicht Teil 1: Modeling Workshop

- 3D Blender
- Interface
- Blueprints
- Modeling
- Texturing

Blender

model - shade - animate - render - composite - interactive 3d

Blender is the free open source 3D content creation suite, available for all major operating systems under the GNU General Public License.

- Womit erzeuge ich mein 3D-Modell ?
 - 3D Creation Suite Blender
 - Download von www.blender.org
- Warum Blender ?
 - Kostenlos, OpenSource
 - Leistungsstark in Modeling, Texturing,
 Animation, Export und Rendering
 - Große Community, hilfreiches Forum und umfassende Dokumentation
 - Sehr schneller Zuwachs an neuen Features
 - Game-like Workflow
 - Starker UV-Editor
- Blender OpenSource Creative Commons License Gedanke

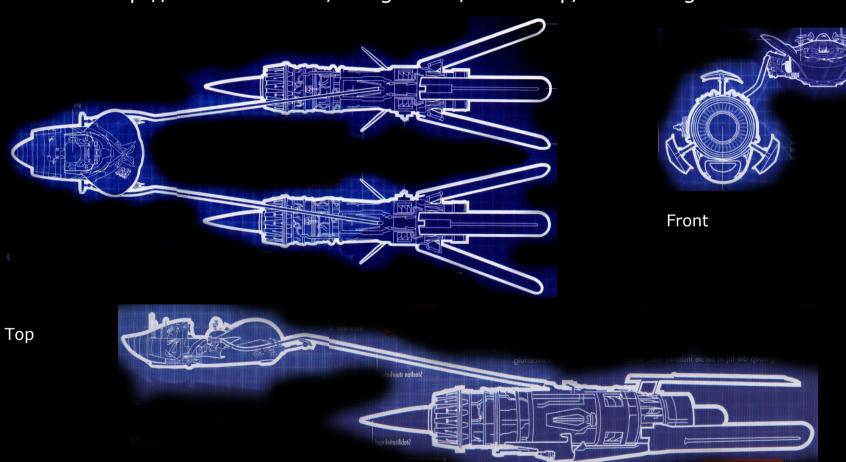
Art Gallery

Forums

Get Involved

Foundation / Institute

- Idee
 - Was für ein Modell (Charakter, Maschine, Pflanze ?)
 - Maschine: Science Fiction Vehicle oder Auto?
 - Aussehen und Form
- Blueprint
 - Erstellen oder Downloaden und Anpassen (PodRacer)



Blueprints

Workshop-Dateien online:

http://home.arcor.de/designo477/workshop/blender.rar bzw.

http://home.arcor.de/designo477/workshop/blenderBig.rar

Side

Benennen der Objekte

- 3D-Objekte müssen später im Code eindeutig identifizierbar sein
 - wichtig, sobald mehr als 1 Objekt vorhanden ist
- Eventuell sollen Kollegen mit der Datei besser umgehen können?
- Namen für alle einzelnen Objekte und Materialien vergeben
 - Chassis
 - Connector
 - Jet
 - JetInner
 - L,R etc. für links rechts

Quickstart: Interface in Top-View i ⇒ File Add Timeline Game Render Help ⇒ SR:2-Model X SCE:Scene 🗶 🙋 www.blender.org 246 | Ve:8 | Fa:6 | Ob:3-1 | La:1 | Mem:0.91M (0.09M) | Time: | Cube **Z-Axis** Mede Change (Object/Edit) ## ♥ View Select Object 12 Object Mode ♦ 14 Note: 12 Object Mode ♦ 14 Note: 15 Note Panels @ □ 0 t 0 □ Link Buttons-Window Mesh Modifiers # ME:Cube F OB:Cube Auto Smooth TexMesh: Add Multires Add Modifier To: Cube Sticky Make Mesh and Object Naming **UV Texture** New Vertex Color New Delete Newste Delete Center Center New Copy Group Select Deselect Center Cursor Assign Double Sided Set Smooth Set Solid AutoTexSpace No V.Normal Flip

Quickstart: Interface und Navigation

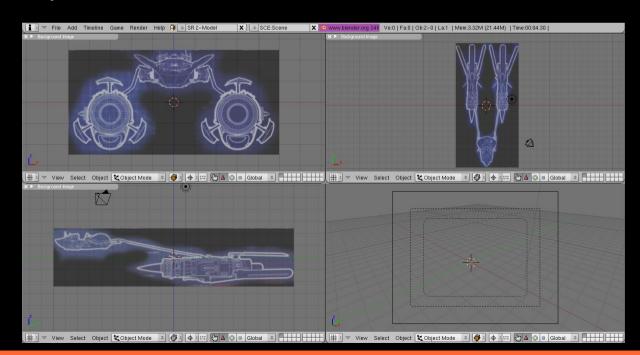
Interface

- Bedient sich nach Eingewöhnung wie ein Game!
- Window-Areas (Anpassbarkeit)
- Window-Types
- Preferences: Autosave, Laptop-Benutzer: Emulate Numpad
- Save User-Preferences (Strg+U)

Navigation (View)

- Rotieren: MMB
- Pan: Shift+MMB
- Zoom: Scrollrad
- Front: Num1 bzw. 1
- Right: Num3 bzw. 3
- Top: Num7 bzw. 7
- Rear, Left, Back mit Strg+1, Strg+3, Strg+7
- Camera: Num0 bzw. 0

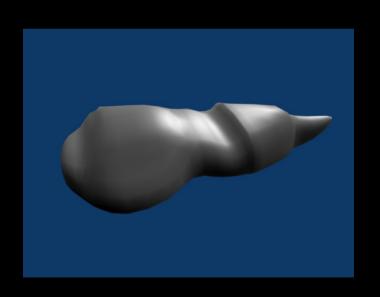
Tutorials für Anfänger


- QuickStart Guide: wiki.blender.org/index.php/QuickStart
- Hotkey Referenz: www.blender.org/education-help/

Basics: Objekte in Blender

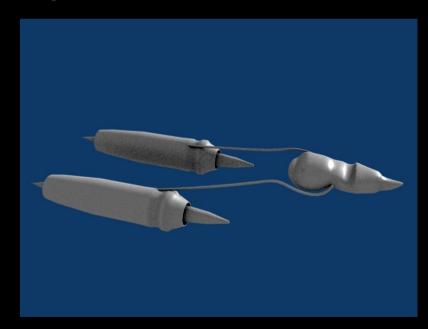
- Selektieren
- Transformieren
 - Transform Widget
 - Hotkeys: Grab G, Rotate R, Scale S
 - Transform Properties Window (N)
- Center
 - Auf Cursor verschieben, Neu berechnen, Objekt zum Center schieben
 - Wichtig: Center des Hauptobjektes bei (0,0,0)
 - Als Pivot benutzen
- Cursor verschieben
 - Einfügepunkt
 - Als Pivotpunkt benutzen
 - Reset auf (0,0,0)
- Objekte
 - Hinzufügen (Plane, Cube, UVSphere, Cylinder, Monkey)
 - Löschen

- Fenster in 4 Fenster unterteilen
 - Strg+Up bringt fokussiertes Window auf "FullScreen"
- Als Hintergrund hinzufügen
- Anpassen und Skalieren

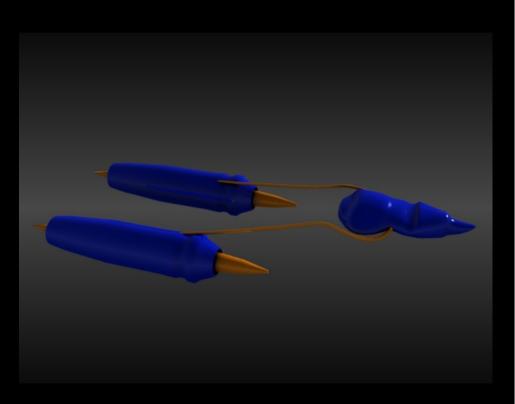

Basics: Box Modeling

- Idee: Aus einer Box mehrere Boxen extrudieren und solange deformieren oder zusammenfügen, bis fertiges Modell entsteht
- Editmode vs. Object Mode (Deformieren vs. Transformieren)
- Selektionsmodi
 - Box select (B) , Circle select (BB)
 - Vertex, Edge, Face select mode
- Extrude (Geometrie aus vorhandener erweitern)
 - Standard: Extrude Region + Grab
 - Schrumpfen / Expandieren: Extrude Region + Scale
 - Eindellen: Extrude + Rotate
- Dem Blueprint anpassen (Grab, Rotate, Scale)
 - Achsen locken (durch entsprechenden Key (X, Y, Z))
- Create Vertex, Face, Edge (Strg+LMB, F)

Advanced: Box Modeling und Rendern


- Specials-Menü (W)
 - Verschmelzen zweier Vertices (W, M) oder (Alt+M)
- Am häufigsten: Alles abwählen (A) + Box select (B)
- Detail (Kanten hinzufügen):
 - (Loop) Cuts (K)
 - Subsurf-Modifier
- Kamera einstellen
 - In Kamerasicht:
 - Shift-F: W,S,A,D,R,F,
 - Mausbewegung & Scrollrad
- Rendern (F12)
 - Auflösung
 - Anti-Aliasing
 - Ausgabeformat

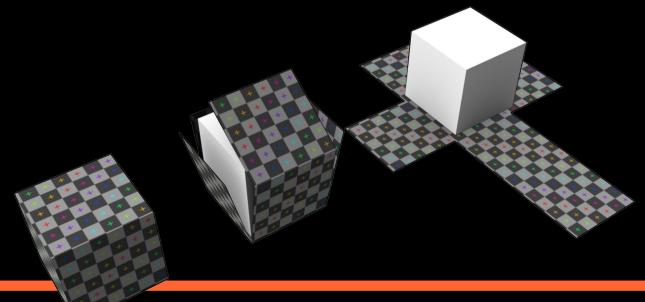
Advanced II: Modeling und Rendering


- Mirror modifier (symmetrisches Modellieren)
- Details hinzufügen durch Cuts
- Schattieren mithilfe von Ambient Occlusion
 - Objekte beleuchten und schattieren sich gegenseitig

Einfaches Shading mit Materials

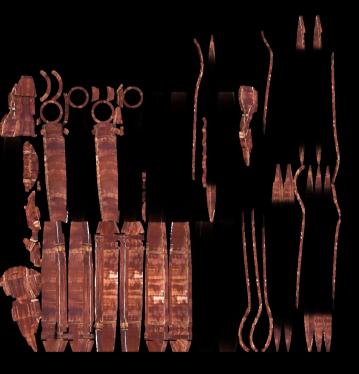
- Material erstellen, Bilder laden
- Farbe (Col)Color picker
- Reflektionsstärke (Ref)
- Glanzlicht (Spec)
- Härte (Hard)
- RayMirror (Ray Tracing for Mirror Reflection)

- Textur für Material erstellen
 - Zum Material hinzufügen
 - Bild laden
 - Projektion festlegen (häufig: Orco Cube oder UV Flat)
 - Welchen Zweck erfüllt die Textur, d.h. auf welchen Shader-Parameter wird sie gemappt ? (MapTo)
 - Farbe (Col)
 - Oberflächenrauheit, Bump-Mapping (Nor)
 - Heightmap (2D SW => 2D Höhen/Tiefen)
 - Normalmap (3D RGB => 3D Normalenvektoren)
 - Alpha-Maske (Stencil)
 - Reflektionsstärke (Ref)
 - Glanzlichstärke (Spec)
 - Transparenz (Alpha)
- Workshop: Texturen f
 ür Farbe und Bump-Mapping

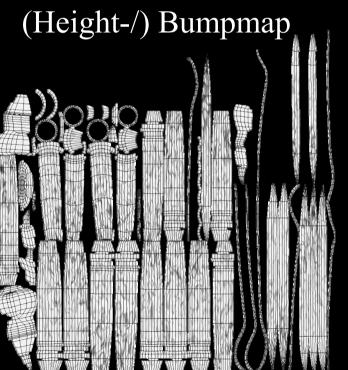


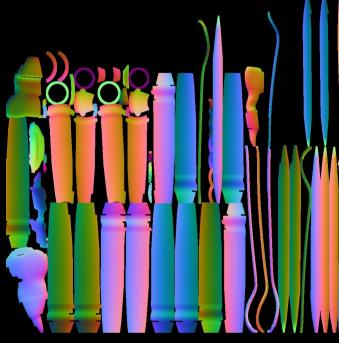
Farb- und Bumpmapping

- UV Texturkoordinaten
 - Jedem 3D-Vertex wird eine 2D-Texturkoordinate zugewiesen, dazwischen wird interpoliert
- UV Unwrapping
 - Festlegen der UV-Texturkoordinaten (Mapping) gemäß einer Projektionsmethode
 - Cube Projection
 - Project from View
 - Smart Projection



Baking Textures


- Modifier anwenden
- Mehrere Objekte in 1 umwandeln (optional) (Strg+J)
- Unwrappen (U)
- Normalen neu berechnen (Strg+N)
- Baken der Texturen
 - Colormap: Farben der Oberfläche
 - (Height-/) Bumpmap (2D):
 - Relief der Oberfläche (Höhen und Tiefen)
 - Normalmap (3D):
 - Noch detailierteres Oberflächenrelief (3D statt 2D)
- "Selected To Active"-Button: Baken auf anderes (einfacheres)
 Mesh

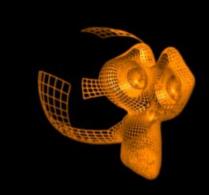


Baked Textures

Colormap

Normalmap

Übersicht Teil 2: Export


- Dateiformate
- OBJ-Formate und Wings 3D
- OBJ und FBX Content Processor für XNA
- Am besten FBX (direkt XNA kompatibel)
- Laden und Rendern in XNA

Blender Import und Export

Import

	VRML 1.0	
	DXF	
	STL	
2	3D Studio (.3ds)	۰
2	AC3D (.ac)	
P	Autodesk DXF (.dxf)	
2	COLLADA 1.3.1 (.dae)	
2	COLLADA 1.4(.dae)	
2	DEC Object File Format (.off)	
2	DirectX(x)	
2	LightWave (.lwo)	
2	Lightwave Motion (.mot)	
2	Load MDD to Mesh RVKs	
%	MD2 (.md2)	
%	MilkShape3D (.ms3d)	
%	Motion Capture (.bvh)	
%	OpenFlight (.flt)	
2	Paths (.svg, .ps, .eps, .ai, Gimp)	
2	Pro Engineer (.slp)	
2	Raw Faces (.raw)	
2	Stanford PLY (*.ply)	
2	Wavefront (.obj)	

Export

VRN	/L 1.0 (Ctrl F2
DXF	: S	hift F2
STL		
	Studio (.3ds)	
🏖 AC3	3D (.ac)	
🏖 Auto	odesk FBX (.fbx)	
🗞 COL	LADA 1.3.1 (.dae)	
🗞 COL	.LADA 1.4(.dae)	
ね DEC	Object File Format (.off)	
🗞 Dire	ctX (x)	
🗞 Ligh	tWave (.lwo)	
🗞 Ligh	twave Motion (.mot)	
🧞 мзс	G (.m3g, .java)	
🗞 MD2	2 (.md2)	
🧞 Оре	nFlight (.flt)	
🗞 Оре	nInventor (.iv)	
🔑 Qua	ke 3 (.map)	
🏖 Raw	Faces (.raw)	
🗞 Sav	e Current Theme	
🗞 Softi	mage XSI (xsi)	
🏖 Star	iford PLY (*.ply)	
🏖 VRN	/IL97 (.wrl)	
🏖 Vert	ex Keyframe Animation (.mdd)	
	refront (.obj)	•
🏞 ХЗС	Extensible 3D (.x3d)	
	export (.fig)	

OBJ Format(e)

- Blender: Export als OBJ
 - Triangularisieren und Normalen exportieren !
- Intuitiv definiert:
 - Material Dateilink
 - Vertices (v)
 - 3D-Vektoren
 - Vertex UV-Texturkoordinaten (vt)
 - 2D-Vektoren
 - Vertex normals (vn)
 - 3D-Vektoren
 - faces (f)
 - v1//vn1 v2//vn2 v3//vn3
 - jedoch manchmal auch v1/vn1 v2/vn2 v3/vn3
 - bzw. v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3
 - sollten Triangles sein statt Quads!
- Es existieren also verschiedene Formate
 - Verschiedene Tools ausprobieren
 - Dateiformat Parser schreiben

OBJ und FBX > Content Processor > XNA

- OBJ-Importer = Custom Model Importer von XNA
 - Download: http://creators.xna.com/en-us/sample/custommodelimporter
- Blender:
 - Triangulate
 - export Normals
 - don't copy images (buggy script)
- Editor:
 - In der OBJ .mtl Materialdatei müssen alle "Ni" zu "Ns" Parametern konvertiert werden
- FBX-Importer = Integrierter Content Processor von XNA
- Blender:
 - Export Mesh
 - Apply all modifiers
 - Export HQ Normals

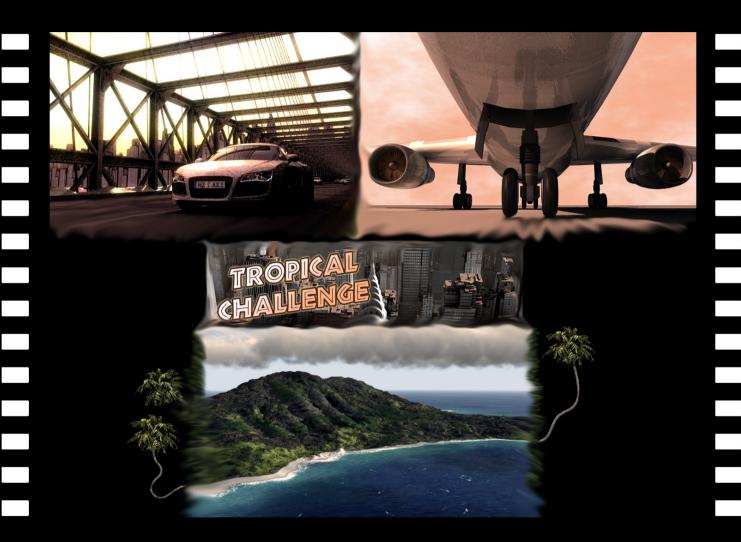
Content Processor konfigurieren

- Bedienung
 - vollautomatisch
 - daher optional
 - außerdem weitgehend selbstklärend
- Parameter
 - Dateitypen
 - Komprimierungsstufen
 - Pfade
 - Farbeinstellungen
- Verschiedene Content Processors:
 - Model Loader
 - Texture Loader
 - Effect Loader

Car Showcase

- Model Viewer
- Generische Struktur:
 - Actor
 - Model
 - Meshes
 - Materials
 - Textures
- Starte Demo ...

Quellen und Kontakt


- http://www.blender.org
- http://www.dreambuildplay.com
- http://www.pcgames.de/
- http://en.wikipedia.org/wiki/UV_mapping
- http://de.wikipedia.org/wiki/Bump_mapping

Bei Fragen zu Blender:

E-Mail an: Philipp.Vath at jupiter.uni-freiburg.de

Danke für eure Aufmerksamkeit

visit www.alphredo.com to see yet another blender open movie project